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Cross-View Approximation on Grassmann Manifold for Multiview Clustering
Yidan Ma , Xinjie Shen, Danyang Wu , Jianfu Cao, and Feiping Nie , Senior Member, IEEE

Abstract— In existing multiview clustering research, the comprehensive
learning from multiview graph and feature spaces simultaneously remains
insufficient when achieving a consistent clustering structure. In addition,
a postprocessing step is often required. In light of these considerations,
a cross-view approximation on Grassman manifold (CAGM) model is
proposed to address inconsistencies within multiview adjacency matrices,
feature matrices, and cross-view combinations from the two sources. The
model uses a ratio-formed objective function, enabling parameter-free
bidirectional fusion. Furthermore, the CAGM model incorporates a
paired encoding mechanism to generate low-dimensional and orthogonal
cross-view embeddings. Through the approximation of two measurable
subspaces on the Grassmann manifold, the direct acquisition of the
indicator matrix is realized. Furthermore, an effective optimization
algorithm corresponding to the CAGM model is derived. Comprehensive
experiments on four real-world datasets are conducted to substantiate
the effectiveness of our proposed method.

Index Terms— Adaptively weighted learning, bidirectional
fusion, Grassmann manifold, multiview clustering.

I. INTRODUCTION

Multiview clustering research seeks to leverage multiview data
to establish a coherent clustering structure within an unsupervised
framework [1], [2], [3], [4], [5], [6]. Presently, the existing method-
ologies can be broadly classified into two categories: one that focuses
on generating consistent embeddings from multiple graph spaces [7],
[8], [9], [10], [11], [12] and the other from multiple feature spaces [9],
[13], [14], [15], [16], [17]. However, these unidirectional learning
mechanisms have not sufficiently delved into the intricate interplay
between graph structures and features.

Many researchers have developed various fusion strategies with the
aim of reducing information loss and improving clustering perfor-
mance. For example, some advancements focus on integrating latent
representations from multiview data and clustering tasks to formulate
a one-step strategy [18], [19]. In addition, clustering partition matrices
and kernel matrices can be jointly learned to complement each
other [20], [21]. Others unify graph learning, graph fusion, and
spectral clustering [22], or use random view groups and an early–late
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fusion strategy to capture the relationship from multiple views [23].
Some algorithms begin to mitigate the gap between multiview feature
spaces and graph spaces [24], [25]. While prior contributions have
been established using attributed or bipartite graphs to leverage both
the node attributes and graph structures, a notable deficiency exists
in achieving an in-depth integration of graph structures and features
across different views. Furthermore, the computational challenges
stemming from the integration of cross-view combinations and high-
dimensional features have not been adequately addressed.

In this study, we propose a model called cross-view approximation
on the Grassmann manifold (CAGM) to improve effective interactions
and information acquisition from both multiview graph structures and
features while not introducing additional computational complexity.
CAGM uses a bidirectional fusion method to obtain the indicator
matrix directly from multiple adjacency and feature matrices. CAGM
learns a weighted structural embedding from multiple adjacency
matrices initially and generates cross-view low-dimensional embed-
dings from multiple adjacency and feature matrices using a paired
encoding mechanism. Finally, the integration of aforementioned two
steps is achieved by a ratio-based objective function, which intro-
duces subspace approximation on the Grassmann manifold. CAGM
facilitates interactions among multiview graph structures and features,
preserving the integrity of the initial graph structure and feature
information without requiring hyperparameter tuning or additional
postprocessing, such as the K -means clustering algorithm. The
robustness of the method is validated through experiments on diverse
real-world datasets. The key contributions of this study are outlined
as follows.

1) The CAGM model directly learns clustering results and
improves unified feature extraction capabilities in both mul-
tiview graph space and feature space through a bidirectional
fusion strategy, while preserving the integrity of the original
features and graphs.

2) A comprehensive adaptive weighted learning scheme is devised
to credit and ensure the complementarity of both multiview
graph structures and features in the same view and cross-view
combinations.

3) An alternating iterative algorithm is formulated to address the
optimization challenge within the CAGM model, and experi-
ments are conducted to affirm its efficiency on four real-world
datasets.

Notations: The sample size, number of classes, and feature dimen-
sionality for the vth view are denoted as n, c, and dv , respectively.
We analyze a multiview dataset comprising m1 adjacency matrices
{Av1 }

m1
v1=1, Av1 ∈ Rn×n and m2 feature matrices {Xv2 }

m2
v2=1, Xv2 ∈

Rn×dv2 . We assume no discernible correlation between each view
represented by Av1 and Xv2 . Ind(n, c) represents n by c indicator
matrix, R refers to the real space, I stands for the identity matrix,
and XT and Tr(X) denote the transpose and trace of matrix X,
respectively. ∥X∥F = (Tr(XT X))1/2 denotes the Frobenius-norm of
matrix X, and ∥x∥2 = (

∑
i x2

i )
1/2 denotes the ℓ2-norm of vector x.

We also use the notation ∥x∥−1 to signify that it is equivalent to∑
i x−1

i = 1. x ⪰ 0 indicates that all the elements in vector x are
greater than or equal to zero.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

https://orcid.org/0000-0002-9750-439X
https://orcid.org/0000-0002-0309-1409
https://orcid.org/0000-0002-0871-6519


2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 1. Workflow of the proposed CAGM model.

II. METHODOLOGY

This section introduces the CAGM model, which obtains bidirec-
tional interactions between multiview graph structures and features.
Fig. 1 illustrates the workflow of the CAGM model. The specifics of
acquiring the clustering indicator matrix are outlined as follows.

A. From the Side of Multiview Graph Structures

The initial objective is to optimize a weighted structural embedding
H as H ∈ Rn×c approximating adjacency matrices {Av1 }

m1
v1=1 as close

as possible. To enhance the separability of the acquired embedding, H
is replaced with a combinatorial formulation of the indicator matrix
Y as H = Y(YT Y)−1/2, where Y ∈ Ind(n, c) [26]. We also introduce
an adjusting weight vector α with the constraint ∥α∥2 = 1, α ⪰ 0 to
identify the importance of each Av1 . The problem can be formulated
as follows:

max
Y,α

m1∑
v1=1

αv1 Tr
(
(YT Y)−

1
2 YT Av1 Y(YT Y)−

1
2

)
s.t. Y ∈ Ind(n, c), ∥α∥2 = 1, α ⪰ 0 (1)

where αv1 is the v1th element of α.

B. From the Side of Multiview Graph Features

In problem (1), Y is obtained unidirectionally from multiview
graph structures. In this part, we develop a suitable encoding scheme
to achieve interaction between multiview graph structures and fea-
tures while maintaining the integrity of the original features and
graphs.

Arbitrary graph filters ϕ(·) can be applied initially to multiple
adjacency matrices {Av1 }

m1
v1=1 obtaining the structural representations

{ϕ(Av1)}
m1
v1=1. We choose ϕ(Av1) = ((D−1/2

v1
Av1 D−1/2

v1
+ I)/2)g , g =

1 in the experimental setup, where g is the filter order and {Dv1 }
m1
v1=1

are the degree matrices of {Av1 }
m1
v1=1. Furthermore, we introduce

m1×m2 linear projection matrices Wv1,v2 , Wv1,v2 ∈ Rdv2 ×c to integrate
each {ϕ(Av1)}

m1
v1=1 and {Xv2 }

m2
v2=1, yielding low-dimensional cross-

view representations ϕ(Av1)Xv2 Wv1,v2 . Considering the perspective of
multiview features, we introduce an adjusting weight p to obtain m2

target orthogonal embeddings
∑m1

v1=1 pv1ϕ(Av1)Xv2 Wv2 , where pv1 is
the v1th element of p, ∥ p∥2 = 1. Each Wv1,v2 is simplified as Wv2 to
illustrate the projection for

∑m1
v1=1 pv1ϕ(Av1)Xv2 . We simplify each∑m1

v1=1 pv1ϕ(Av1)Xv2 Wv2 as Ĥv2 , which satisfies the orthogonality
constraint ĤT

v2
Ĥv2 = I.

To achieve the feasible similarity between the desired indicator
matrix Y and the paired encodings Ĥv2 , we approach this task
as an approximation learning problem involving two subspaces on
the Grassmann manifold. Since Ĥv2 and Y(YT Y)−1/2 adhere to
the orthogonal constraint ĤT

v2
Ĥv2 = I and Y(YT Y)−1YT

= I,
respectively, we can describe the distance between the two subspaces
span(Ĥv2) and span(Y(YT Y)−1/2) by the squared projection met-
ric [27]. In addition, we introduce another adjusting weight q with

the constraint ∥q∥−1 = 1, q ⪰ 0 to represent the significance of
embeddings, as shown in the following equation:

min
Y, p,q,W

m2∑
v2=1

qv2

∥∥Ĥv2 ĤT
v2

− Y(YT Y)−1YT
∥∥2

F

s.t. Y ∈ Ind(n, c), ∥q∥−1 = 1, q ⪰ 0, ∥ p∥2 = 1, ĤT
v2

Ĥv2 = I

Ĥv2 =

m1∑
v1=1

pv1ϕ(Av1)Xv2 Wv2 , v2 ∈ [1, m2] (2)

where qv2 corresponds to the v2th element of q. Consequently,
a cross-view uniform embedding can be effectively achieved.

C. Bidirectional Fusion

This section aims to establish a bidirectional learning between
problem (1) and problem (2). Compared with introducing hyper-
parameters to link the two learning tasks, adopting a ratio-based
approach is more suitable for real applications, as it helps avoid
manual tuning [28]. Mathematically, the problem can be reformulated
as follows:

max
Y,α, p,q,W

∑m1
v1=1 αv1 Tr

(
(YT Y)−

1
2 YT Av1 Y (YT Y)−

1
2

)
∑m2

v2=1 qv2

∥∥Ĥv2 ĤT
v2

− Y(YT Y)−1YT
∥∥2

F

s.t. Y ∈ Ind(n, c), ∥α∥2 = 1, α ⪰ 0, ∥ p∥2 = 1, ∥q∥−1 = 1

q ⪰ 0, Ĥv2 =

m1∑
v1=1

pv1ϕ(Av1)Xv2 Wv2 , ĤT
v2

Ĥv2 = I

v2 ∈ [1, m2]. (3)

Problem (3) aims to learn the uniform clustering structure by fully
exploring the information from the combination of cross-view graph
structures {Av1 }

m1
v1=1 and features {Xv2 }

m1
v2=1.

III. OPTIMIZATION

A. Related Framework

Within this segment, the formulation of an iterative algorithm is
introduced to tackle problem (3). Initially, the procedure delineated as
Algorithm 1 is applied to resolve the following general maximization
ratio problem [29]:

max
x∈1

f (x)

g(x)
(4)

where 1 is an arbitrary constraint on x and g(x) > 0.
Algorithm 1 enhances the value of the objective function for

problem (4) through a series of iterations until it converges. Moreover,
the global solution of problem (4) aligns with the root of a subsequent
function

arg max
x∈1

f (x) − λi g(x). (5)

Considering the denominator in problem (3)
∑m2

v2=1 qv2∥Ĥv2 ĤT
v2

−

Y(YT Y)−1YT
∥

2
F is greater than 0, we can reformulate problem (3)
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Algorithm 1 Algorithm to Solve Problem (4)
Initialization: x ∈ 1, iteration step i = 1
while not converge do

Calculate λi =
f (xi )
g(xi )

Calculate xi+1 = arg max
x∈1

f (x) − λi g(x)

i = i + 1
endwhile

as follows:

max
Y,α, p,q,W

m1∑
v1=1

αv1 Tr
(
(YT Y)−

1
2 YT Av1 Y(YT Y)−

1
2

)
− λ

m2∑
v2=1

qv2

∥∥Ĥv2 ĤT
v2

− Y(YT Y)−1YT
∥∥2

F

s.t. Y ∈ Ind(n, c), ∥α∥2 = 1, α ⪰ 0, ∥ p∥2 = 1, ∥q∥−1 = 1

q ⪰ 0, Ĥv2 =

m1∑
v1=1

pv1ϕ(Av1)Xv2 Wv2 , ĤT
v2

Ĥv2 = I

v2 ∈ [1, m2]. (6)

Following this, problem (6) can be solved via the following
iterative procedure. A comprehensive adaptive weighted learning
scheme that incorporates α, q, and p is developed to assign credit to
multiview graph structures and features.

B. Derivation

In each iteration, λ is computed based on the current Y, α, p, q
and W, constituting the outer-loop optimization. In the subsequent
inner-loop optimization, Y, α, p, q and W are alternately optimized
alongside the current λ.

Update Y and fix α, p, q, W. When R1 =
∑m1

v1=1 αv1 Av1 and R2 =

2
∑m2

v2=1 qv2(
∑m1

v1=1 pv1ϕ(Av1)Xv2 Wv2)(
∑m1

v1=1
pv1ϕ(Av1)Xv2 Wv2)

T are denoted, problem (6) can be rewritten as the
following trace maximum problem:

max
Y∈Ind

Tr
((

YT Y
)−

1
2 YT (R1 + λR2)Y

(
YT Y

)−
1
2
)
. (7)

For Y ∈ Ind(n, c) signifying Y is row-independent, we can use the
fast coordinate descend algorithm to handle problem (7) [26].

Update α and fix Y, p, q, W. Problem (6) with respect to α is
transformed into the following problem:

max
α

m1∑
v1=1

αv1 Tr
((

YT Y
)−

1
2 YT Av1 Y

(
YT Y

)−
1
2
)

s.t. ∥α∥2 = 1, α ⪰ 0. (8)

For convenience, we denote {hv1 }
m1
v1=1 = {α2

v1
}

m1
v1=1 and rewrite

problem (8) as follows:

max
h

m1∑
v1=1

√
hv1 Tr

((
YT Y

)−
1
2 YT Av1 Y

(
YT Y

)−
1
2
)

s.t.
m1∑

v1=1

hv1 = 1, h ⪰ 0. (9)

Considering the term
∑m1

v1=1 hv1 = 1, the following results using
Cauchy–Schwarz inequality can be obtained [30]:

m1∑
v1=1

√
hv1 Tr

((
YT Y

)−
1
2 YT Av1 Y

(
YT Y

)−
1
2
)

(a)

≤

√√√√ m1∑
v1=1

hv1

√√√√ m1∑
v1=1

(
Tr

((
YT Y

)−
1
2 YT Av1 Y

(
YT Y

)−
1
2
))2

. (10)

With constant r , the equality in (a) is satisfied when hv1 =

r(Tr((YT Y)−1/2YT Av1 Y(YT Y)−1/2))2. Consequently, we can deter-
mine the specific value of r

r =
1∑m1

v1=1

(
Tr

((
YT Y

)−
1
2 YT Av1 Y

(
YT Y

)−
1
2
))2 . (11)

The value of r can be used to derive hv1 and then use hv1 for the
calculation of αv1 as shown below

αv1 =

Tr
((

YT Y
)−

1
2 YT Av1 Y

(
YT Y

)−
1
2
)

√∑m1
v1=1

(
Tr

((
YT Y

)−
1
2 YT Av1 Y

(
YT Y

)−
1
2
))2

(12)

which corresponds to the solution for the v1th view in problem (8).
Update q and fix Y, α, p, W. Problem (6) concerning q can be

expressed as follows:

min
q

m2∑
v2=1

qv2

∥∥∥Ĥv2 ĤT
v2

− Y
(
YT Y

)−1YT
∥∥∥2

F

s.t. ∥q∥−1 = 1, q ⪰ 0 (13)

where Ĥv2 =
∑m1

v1=1 pv1ϕ(Av1)Xv2 Wv2 , v2 ∈ [1, m2]. To simplify the
notation, we denote dv2 = 1/qv2 , rv2 = ∥Ĥv2 ĤT

v2
− Y(YT Y)−1YT

∥
2
F ,

where v2 ∈ [1, m2]. Consequently, problem (13) can be reformulated
as the following expression with respect to d:

min∑m2
v2=1 dv2 =1,d⪰0

m2∑
v2=1

rv2

dv2

. (14)

Based on the constraints
∑m2

v2=1 dv2 = 1, d ⪰ 0 and the
Cauchy–Schwarz inequality, we can derive the lower bound for the
objective in problem (14)

m2∑
v2=1

rv2

dv2

=

m2∑
v2=1

rv2

dv2

m2∑
v2=1

dv2

(b)

≥

 m2∑
v2=1

√
rv2

2

(15)

where the equality in (b) holds when dv2 = e√rv2 with constant t ,
v2 ∈ [1, m2]. After obtaining e through the equality in (b), we can
derive each qv2 in order

qv2 =

∑m2
v2=1

√rv2
√rv2

, v2 ∈ [1, m2] (16)

where q is the solution of problem (13).
Update W and fix Y, α, p, q. When R1 =

XT
v2

(
∑m1

v1=1 pv1ϕ(Av1))
T ∑m1

v1=1 pv1ϕ(Av1)Xv2 and R2 =

XT
v2

(
∑m1

v1=1 pv1ϕ(Av1))
T Y(YT Y)−1YT ∑m1

v1=1 pv1ϕ(Av1)Xv2 , where
v1 ∈ [1, m1], v2 ∈ [1, m2] are denoted, problem (6) with respect to
each Wv2 becomes

max
WT

v2
R1Wv2 =I

Tr
(
WT

v2
R2Wv2

)
. (17)

The solution to each Wv2 is formed by the eigenvectors corresponding
to the first c-largest eigenvalues of R−1

1 R2.
Update p and fix Y, α, q, W. The reformulation of problem (6)

with respect to p is as follows:

max
∥ p∥2=1

m2∑
v2=1

qv2 Tr
(
Ĥv2 ĤT

v2
Y(YT Y)−1YT )

(18)

where Ĥv2 =
∑m1

v1=1 pv1ϕ(Av1)Xv2 Wv2 , v2 ∈ [1, m2]. Define Mv1 =

ϕ(Av1)
∑m2

v2=1 qv2 Xv2 Wv2 WT
v2

XT
v2

and Nv1 = Y(YT Y)−1YT ϕ(Av1),
where v1 ∈ [1, m1], v2 ∈ [1, m2], reformulate problem (18) as

max
∥ p∥2=1

Tr

 m1∑
v1=1

pv1 Mv1

 m1∑
v1=1

pv1 Nv1

T . (19)

Introducing the column-based matrix vectorization operator
col(·) to acquire M̂ = [col(M1), . . . , col(Mm1)] and
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Algorithm 2 Optimization Algorithm of CAGM
Input: Y, α, p, q, W
Output: Y
while not converge do

Calculate λ via (3)
while not converge do

Update Y via solving Problem (7)
Update α via solving Problem (8)
Update q via solving Problem (13)
Update W via solving Problem (17)
Update p via solving Problem (18)

endwhile
endwhile
N̂ = [col(N1), . . . , col(Nm1)] as M̂, N̂ ∈ Rnm1×m1 [31]. Subsequently,
the problem (19) can be rewritten as follows:

max
∥ p∥2=1

Tr
(

pT N̂T M̂ p
)
. (20)

The solution for problem (20) can be formed as the eigenvectors
corresponding to the m1 largest eigenvalues of the matrix N̂T M̂. The
above derivation is summarized in Algorithm 2.

C. Theoretical Analysis

1) Computational Cost: Consider the values of {Xv2 }
m2
v2=1 are

dense and the filter parameter g in the graph filter ϕ(Av1) =

((D−1/2
v1

Av1 D−1/2
v1

+I)/2)g has no effect on the parameter-free property
since it is not in the proposed model.

Hence, we can determine the computational complexity associated
with updating each variable. Update Y: O(n2c + m1n2dv2 + n2dv2);
update q: O(n3

+ m1n2dv2 + nd2
v2

c + n); update α: O(m1n2c);
update p: O(n2m2

1c); and update each Wv2 : O(d3
v2

+ n2dv2 + n). The
computation of λ is only required during the initialization step and
it can be recalculated when computing α and q during the iterations.
The whole computational cost: O([(m2 + cdv2)

2n + (m2
1 + m1)cn2

+

(m1 + m2)dv2 n2
+ n3

]T ), where T is the number of iterations.
2) Convergence Analysis: we summarize the convergence guaran-

tee into Theorem 1.
Theorem 1: The objective value of problem (3) will display a

monotonically increasing trend until Algorithm 2 converges.
Proof: In the inner loop of Algorithm 2, Yt , αt , q t , Wt , and

pt in the t th iteration are updated to their respective counterparts,
namely, Yt+1, αt+1, q t+1, Wt+1, and pt+1. In each iteration, every
subproblem is solved to obtain a closed-form solution leading to a
consistent increase in the objective function of problem (6). After
denoting L(α, Y) =

∑m1
v1=1 αv1 Tr((YT Y)−

1
2 YT Av1 Y(YT Y)−

1
2 ) and

L(q, p, W, Y) =
∑m2

v2=1 qv2∥Ĥv2 ĤT
v2

− Y(YT Y)−1YT
∥

2
F , we have the

following inequality:

L(αt+1, Yt+1) − λL(q t+1, pt+1, Wt+1, Yt+1)

≥ L(αt Yt ) − λL(q t , pt , Wt , Yt ) = 0. (21)
After a simple transformation, we have

L(αt+1Yt+1)

L(q t+1, pt+1, Wt+1, Yt+1)
≥ λ =

L(αt , Yt )

L(q t , pt , Wt , Yt )
(22)

which completes the proof.

IV. EXPERIMENTS

In this section, we use four real-world benchmark datasets, namely,
Digit4k,1 MSRC,2 ORL,3 and 100Leaves4 to evaluate the effective-
ness of CAGM.

1http://yann.lecun.com/exdb/mnist/
2https://mldta.com/dataset/msrc-v1/
3http://www.U.K..research.att.com/facedatabase.html
4https://archive.ics.uci.edu/ml/datasets/One-

hundred+plant+species+leaves+data+set

TABLE I
DESCRIPTION OF DATASETS

Fig. 2. T-SNE visualization results of cross-view embeddings Ĥv2 on
(a) Digit4k and (b) MSRC datasets.

The Digit4k dataset consists of 4000 digit images divided into
four classes. Two sets of features are collected from Census Bureau
employees and high-school students. The MSRC dataset encompasses
210 images allocated among seven distinct classes. Associated with
each image are quintuple eigenvectors: color moment, gist, cent,
hog, and LBP. And the ORL dataset aggregates images of human
faces into 40 classes, culminating in a total of 400 images. Each
image within this dataset is distinguished by a trio of attributes:
a 512-D gist descriptor, a 59-D LBP descriptor, and 254 central
features. The dataset named 100Leaves includes 1600 samples, each
representing one of the 100 different plant species, and incorporates
shape descriptors, fine-scale edges, and texture histograms. Table I
presents the number of clusters (class), instances (num.), views, and
the dimensionality of features in the vth view (dv) in each dataset.

Six competitors for the state-of-the-art (SOTA) multiview clus-
tering includes: AMGL [32], CGD [33], NESE [34], AWP [35],
LSGMC [36], MMGC [37], and PFCEL [38]. Experiments are
conducted on a workstation powered by an Intel Core i7-9700 CPU at
3.0 GHz, using MATLAB R2022b. During the preliminary setup, a K-
nearest neighbors graph is constructed with a fixed number of nearest
neighbors (k) set to 5 [39]. For postprocessing, spectral clustering is
applied in CGD and LSGMC, whereas AMGL uses the K -means
approach. To maintain equitable conditions, both spectral clustering
and K -means run ten times with varied initial seeds averaging the
outcomes as per [40]. Cluster analysis is quantified through four met-
rics: accuracy (ACC), normalized mutual information (NMI), purity,
and adjusted rand index (ARI) with higher figures denoting superior
results. Table II showcases the results with the top-performing results
highlighted in bold and the second-best results underlined.

The proposed CAGM model consistently demonstrates optimal
or near-optimal performance across the four datasets. For example,
CAGM outperforms the SOTA by 0.0302 (ACC), 0.0152 (NMI),
0.0291 (purity), and 0.0305 (ARI) on the Digit4k dataset and 0.0190
(ACC), 0.0372 (NMI), 0.0190 (purity), and 0.0382 (ARI) on the
MSRC dataset. Furthermore, we use the t-distributed stochastic neigh-
bor embedding (T-SNE) algorithm [41] to visualize the separability
of one cross-view embedding Ĥv2 =

∑m1
v1=1 pv1ϕ(Av1)Xv2 Wv2 on the

Digit4k and MSRC datasets, as shown in Fig. 2.
The convergence curves on four real-world datasets are illus-

trated in Fig. 3. Thanks to the distinguishability achieved by the
learned embeddings, clustering is achieved in a few iterations. Fig. 4
demonstrates that the convergence speed of adjusting weights α, p,
and q also becomes stable rapidly. Due to minor variations in p
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TABLE II
CLUSTERING PERFORMANCE ON FOUR REAL-WORLD DATASETS

Fig. 3. Convergence curves on four real-world datasets. (a) Digit4k,
(b) MSRC, (c) ORL, and (d) 100Leaves.

during updating, normalization adjustments are applied to the vertical
coordinate settings.

Furthermore, we explore the influence of the graph filter order g
on metrics: ACC, NMI, and purity. This investigation is illustrated
in Fig. 5, where the parameter g is varied from 1 to 10 across four
real-world datasets. Herein, the clustering performance demonstrates
fluctuations with varying values of g, reflecting both enhancements
and deteriorations. As g increases, information propagation expands,

Fig. 4. Change in weights α, p, and q on (a), (c), and (e) ORL and (b), (d),
and (f) 100Leaves datasets.

Fig. 5. Performance metrics (ACC, NMI, purity) at varied graph filter
order g on four real-world datasets. (a) Digit4k, (b) MSRC, (c) ORL, and
(d) 100Leaves.

resulting in smoother feature updates. Fluctuations observed in the
metric curves can be attributed to the underfitting tendency associated
with small g values, while larger g values lead to overfitting. The
optimal value of g holds the potential to achieve a more balanced
aggregation of multiview graph structures and features. Besides, the
number of nearest neighbors k during graph construction has a
substantial influence on the performance of relevant methods, such as
AMGL, NESE, AWP, MEA, and our proposed method. Selecting an
appropriate k allows for a finer equilibrium between local and global
multiview information.
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V. CONCLUSION

In this brief, we address the gap in the integration of multiple graph
and feature spaces in multiview clustering by proposing a CAGM
model. CAGM integrates a paired encoding mechanism aimed at
producing low-dimensional and orthogonal cross-view embeddings
derived from both multiview graph structures and features. Subse-
quently, CAGM uses a ratio-formed objective function and leverages
the Grassmann manifold subspace approximation to directly generate
the indicator matrix. The corresponding algorithm is derived to tackle
this issue, and the experimental results across various real-world
datasets showcase the efficiency of CAGM. Our future emphasis will
be on optimizing the incomplete utilization of cross-view combina-
tions from multiple graph and feature spaces.
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